Short‐term load forecasting based on a generalized regression neural network optimized by an improved sparrow search algorithm using the empirical wavelet decomposition method

Author:

Fan Guo‐Feng1,Li Yun1,Zhang Xin‐Yan1,Yeh Yi‐Hsuan2,Hong Wei‐Chiang23ORCID

Affiliation:

1. School of Mathematics & Statistics Ping Ding Shan University Ping Ding Shan Henan China

2. Department of Information Management Asia Eastern University of Science and Technology New Taipei Taiwan

3. Department of Information Management Yuan Ze University Chungli Taiwan

Abstract

AbstractWith the development of the electric market, electric load forecasting has been increasingly pursued by many scholars. Because the electric load is affected by many factors, it is characterized by volatility and uncertainty, and it cannot be forecasted accurately only by a single model. In the research, a short‐term load forecasting integrated model is proposed to solve the problem of inaccurate forecasting of a single model. The key point of using the integrated model to forecast is to optimize the decomposed sequence to improve the accuracy of the forecast. empirical wavelet decomposition (EWT) is used to decompose the sequence into stationary sequences and avoid modal aliasing; the sparrow search algorithm (SSA) simulates the forecasting and anti‐forecasting behavior of the sparrow population, which is very similar to the electricity consumption behavior of various industries and has good optimization effect; generalized regression neural network (GRNN) is used for forecast and reconstruction; This is the EWT‐SSA‐GRNN model. This paper studies and analyzes the power load of a city in southern Australia. The results show that the integrated model reduces volatility through decomposition and optimization, and can improve forecast accuracy.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3