Coal price forecasting using complete ensemble empirical mode decomposition and stacking‐based ensemble learning with semisupervised data processing

Author:

Tang Jing12,Guo Yida23ORCID,Han Yilin2

Affiliation:

1. School of Information Engineering, College of Information Engineering Beijing Institute of Petrochemical Technology Beijing China

2. Research Institute Yuanguang Software Co., Ltd. Zhuhai Guangdong China

3. Computer Science and Technology Tsinghua University Beijing China

Abstract

AbstractGlobally, coal is a critical energy source, and the profits of related enterprises are highly related to changes in the coal price. A robust coal purchasing cost forecasting method may enhance the coal purchasing strategies of coal‐consuming enterprises and obtain key information for reducing global carbon emissions. However, forecasting the price of coal is a challenging task due to the noise and high random fluctuation of coal price data. To overcome these obstacles, this research proposes a novel forecasting method combining data decomposition, semisupervised feature engineering, and ensemble learning to forecast coal prices. Initially, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) method is employed to decompose the coal price series to reduce the complexity. Second, considering the fluctuation of coal price is influenced by various factors (such as transportation cost and coal mine production), the proposed system incorporates an adaptive data fusion module to fuse data from multiple sources. Finally, a stacking‐based ensemble learning model is adopted in the method to increase the forecasting accuracy by combining the forecasting results of multiple models. The Bohai‐Rim Steam‐Coal Price Index was used to validate the proposed method, and the result of the case study shows that the proposed method provides superior performance than the other nine baseline models in all measured indices. The outcomes of ablation tests indicate the precision of each algorithm is improved by combining CEEMDAN, which proves that the decomposition algorithm is necessary.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3