Cu2(Thiourea)Br2 Complex as a Multifunctional Interfacial Layer for Reproducible PTAA‐Based p–i–n Perovskite Solar Cells

Author:

Wang Yihao1ORCID,Zhou Shujie2,Liu Xu1,Sun Kaiwen1,Lee Minwoo1,Liu Ziheng1,Zhang Meng13,Bai Yang456,Hameiri Ziv1,Hao Xiaojing1ORCID

Affiliation:

1. School of Photovoltaic and Renewable Energy Engineering University of New South Wales Sydney NSW 2052 Australia

2. School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia

3. Institute of Photovoltaics Southwest Petroleum University Chengdu 610500 China

4. Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

5. Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality Shenzhen 518055 China

6. Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia

Abstract

Poly[bis(4‐phenyl)(2,4,6‐trimethylphenyl)amine (PTAA) is one of the most efficient hole transport materials for p–i–n structured perovskite solar cells (PSCs). However, the hydrophobicity of PTAA causes wettability problems and is thereby associated with low yield and poor reproducibility. Herein, a new strategy for improving the perovskite precursor wettability on PTAA is developed. A Cu2(Thiourea)Br2 complex interfacial layer is introduced on the PTAA, improving the coverage of perovskite precursors and thereby the perovskite film. Partially dissolved Cu2(Thiourea)Br2 in the perovskite absorber further enhances band alignment and carrier extraction between layers. With the addition of Cu2(Thiourea)Br2 layer on nondoped PTAA, PSCs in p–i–n structure with a bandgap of 1.63 eV have achieved over 21% efficiency both on 0.1 and 1.0 cm2 sized devices with a significantly improved yield and reproducibility. Unencapsulated devices retain 100% of their initial efficiency after 2000 h at 65 °C.

Funder

Australian Research Council

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3