The Future of Spirobifluorene‐Based Molecules as Hole‐Transporting Materials for Solar Cells

Author:

Vaghi Luca1,Rizzo Fabio23ORCID

Affiliation:

1. Department of Materials Science Università degli Studi di Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy

2. Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Str. 10 48149 Münster Germany

3. Institute of Chemical Science and Technologies “G. Natta” (SCITEC) National Research Council (CNR) via G. Fantoli 16/15 20138 Milan Italy

Abstract

Organic–inorganic halide perovskite solar cells (PSCs) and organic solar cells (OSCs) attract great attention as alternative renewable photovoltaic technology. The state‐of‐the‐art spiro‐OMeTAD (2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene) is the most successful hole‐transport material (HTM) employed in PSCs, whereas solution‐processed inverted OSCs generally use poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Recently, various types of spirobifluorene‐based organic small molecules are reported to overcome the known disadvantages of spiro‐OMeTAD, such as the complex synthetic route, high synthetic cost, and requirement for hygroscopic dopants to improve the charge‐carrier mobility and device performance. Examples of spirobifluorene‐based molecules are also reported as alternative HTMs in inverted OSCs to exceed the drawbacks of PEDOT:PSS, such as acidity and batch‐to‐batch reproducibility. These features significantly limit spiro‐OMeTAD and PEDOT:PSS for large‐scale application in the future. Herein, an overview of recent developments in spirobifluorene organic small molecules as HTM in PSCs and OSCs is provided by focusing on synthetic and electrical features. Finally, the further research directions are discussed to develop novel spirobifluorene‐based HTMs for the realization of reliable and long‐term stable photovoltaic devices.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3