Tunable Hole‐Selective Transport by Solution‐Processed MoO3−x Via Doping for p‐Type Crystalline Silicon Solar Cells

Author:

Wei Yaju1,Yu Guoqiang1,Luo Guohui1,Fu Wang1,Liu Wuqi1,Wang Tao1,Xu Haonan1,Wu Xiaoping1,Xu Lingbo1,Lin Ping1,Zhu Xiaodong2,Yu Xuegong2,Wang Peng1ORCID,Cui Can1

Affiliation:

1. Key Laboratory of Optical Field Manipulation of Zhejiang Province Department of Physics Zhejiang Sci-Tech University Hangzhou 310018 China

2. State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China

Abstract

Molybdenum oxide (MoO3−x, x < 3) has been successfully used as an efficient hole‐selective contact material for crystalline silicon heterojunction solar cells. The carrier transport capability strongly depends on its work function, that is, oxygen vacancies; however, there are lack of effective methods to modulate the multiple oxidation states. Herein, the oxidation states of solution‐processed MoO3−x by doping Nb5+ to improve its hole‐selective contact performance with silicon are tuned. With the optimum doping concentration of 5%, both the reduced Mo5+ and oxygen vacancies increase, resulting in a decrease in the contact resistivity between the MoO3−x film and p‐type silicon from 161.1 to 62.9 mΩ·cm2 and an increase of the effective carrier lifetime from 165.4 to 391.0 μs simultaneously. Similarly, the doping of Ta5+ or V5+ in MoO3−x improves the passivated contact performance with silicon, while the former increases the concentration of oxygen vacancies and the latter reduces it. The solar cell with the structure of Ag/MoO3−x:Nb/p‐Si exhibits a conversion efficiency of 18.37%, which is the highest so far reported for the solution‐processed MoO3−x/silicon heterojunction. This work demonstrates a feasible strategy of tuning hole selectivity in MoO3−x by doping for high‐efficiency solar cells and other optoelectronic device applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3