Dangling Bond Defects on Si Surfaces and Their Consequences on Energy Band Diagrams: From a Photoelectrochemical Perspective

Author:

Moritz Dominik C.1ORCID,Calvet Wolfram1ORCID,Zare Pour Mohammad Amin2ORCID,Paszuk Agnieszka2ORCID,Mayer Thomas1,Hannappel Thomas2ORCID,Hofmann Jan P.1ORCID,Jaegermann Wolfram1ORCID

Affiliation:

1. Department of Materials and Earth Sciences Surface Science Laboratory Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany

2. Institute of Physics Fundamentals of Energy Materials Ilmenau University of Technology Gustav-Kirchhoff-Straße 5 98693 Ilmenau Germany

Abstract

Using silicon in multijunction photocells leads to promising device structures for direct photoelectrochemical water splitting. In this regard, photoelectron spectra of silicon surfaces are used to investigate the energetic condition of contact formation. It is shown that the Fermi‐level position at the surface differs from the values expected from their bulk doping concentrations, indicating significant surface band bending which may limit the overall device efficiency. In this study, the influence of different surface preparation procedures for p‐ and n‐doped Si wafers on surface band bending is investigated. With the help of photoemission and X‐ray absorption spectroscopy, Si dangling bonds are identified as dominating defect centers at Si surfaces. These defects lead to an occupied defect band in the lower half and an unoccupied defect band in the upper half of the Si bandgap. However, partial oxidation of the defect centers causes a shift of defect bands, with only donor states remaining in the Si bandgap. Source‐induced photovoltages at cryogenic temperatures indicate that partial surface oxidation also decreases the recombination activity of these defect centers. It is shown that defect distribution, defect concentration, and source‐induced photovoltages need to be considered when analyzing Fermi‐level pinning at Si surfaces.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3