Affiliation:
1. Department Perovskite Tandem Solar Cells Helmholtz-Zentrum Berlin 12489 Berlin Germany
2. Fakultät IV – Elektrotechnik und Informatik Technical University Berlin 10587 Berlin Germany
Abstract
Research on perovskite/silicon tandem solar cells is chiefly focused on devices in either two‐ or four‐terminal configurations (2T and 4T, respectively). Straying from these commonly investigated approaches, an alternative monolithically integrated device architecture using three terminals (3T) by combining a semi‐transparent perovskite top cell with a silicon heterojunction bottom cell featuring interdigitated rear contacts is presented. In the presence of a p/n recombination junction between subcells, a quasi‐2T configuration is obtained where the additional terminal functions as a current regulator. Thus, in contrast to 2T tandems, current matching between subcells is not necessary. Therefore, these devices are more stable against spectral variations, especially their voltages at maximum power point, as surplus current can be either injected into or extracted from the additional terminal. This is tested both by simulations and for the first time experimentally. Interestingly, the highest power conversion efficiency is not achieved by current matching but by maximizing current generation in the top cell. An experimental realization of a 3T tandem with p/n recombination junction and a power conversion efficiency of 24.9% is presented, thus confirming the general viability of the concept.
Funder
Bundesministerium für Bildung und Forschung
Helmholtz-Zentrum Berlin für Materialien und Energie
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献