Bandgap Pairing in Three‐Terminal Tandem Solar Cells: From Limiting Efficiency to Voltage‐Matched Device Performance

Author:

Wagner Philipp1ORCID,Tockhorn Philipp1ORCID,Zimmermann Lea1ORCID,Köhnen Eike1ORCID,Mariotti Silvia2ORCID,Scheler Florian1ORCID,Härtel Marlene1ORCID,Albrecht Steve13ORCID,Korte Lars1ORCID

Affiliation:

1. Solar Energy Division Department Perovskite Tandem Solar Cells Helmholtz‐Zentrum Berlin 12489 Berlin Germany

2. Energy Materials and Surface Sciences Unit (EMSSU) Okinawa Institute of Science and Technology Graduate University (OIST) Okinawa 904‐0495 Japan

3. Fakultät IV – Elektrotechnik und Informatik Technical University Berlin Berlin 10587 Germany

Abstract

Three‐terminal tandem solar cells (3 T TSCs) have recently sparked increasing interest as they feature a lean monolithic device architecture similar to two‐terminal TSCs and, like four‐terminal TSCs, do not require current matching for optimal operation. In this contribution, detailed balance limit calculations for different combinations of top and bottom cell bandgaps are conducted to determine the optimum bandgap pairing and limiting efficiency of 3T TSCs. An experimental realization of a 3T TSC with perovskite and silicon sub‐cells and a combined efficiency of 28.9% is presented and used to derive a realistic parameterization for non‐radiative recombination. Herein, the optimum bandgap pairing and resulting maximum efficiency under voltage‐matched conditions for voltage‐matching ratios of 1:2 and 2:3, which is relevant for stringing and module integration of 3T TSCs, are further determined. To this end, non‐radiative recombination is incorporated in the model and quantified by matching theoretical open‐circuit voltages and those of real‐world high‐efficiency solar cells based on different absorber materials (and thus bandgaps), including the perovskite top cell of the best in‐house 3T TSC.

Funder

Bundesministerium für Bildung und Forschung

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3