Maturing Effects in Carbon‐Based Perovskite Solar Cells: Understanding and Consequences on Photovoltaic Performances

Author:

Planes Emilie1ORCID,Farha Cynthia1,De Moor Gilles1,Narbey Stéphanie2,Perrin Lara1ORCID,Flandin Lionel1ORCID

Affiliation:

1. Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS Grenoble INP, LEPMI 38000 Grenoble France

2. Solaronix CH-1170 Aubonne Switzerland

Abstract

Recent investigations have highlighted the potential of posttreatments to enhance the performance of specific perovskite solar cells (PSCs), notably focusing on those incorporating carbon‐based materials (C‐PSC). However, the precise mechanisms underpinning this performance boost remain somewhat elusive. This study aims to delve deeper into the maturation phenomenon observed in C‐PSC, concentrating on two distinct methods of perovskite deposition: drop casting and inkjet printing. Upon subjecting the cells to the maturation process, elevation in power conversion efficiency (PCE) becomes evident. Specifically, drop‐cast cells exhibit a PCE advancement from 10.5% to 14%, while inkjet‐printed cells showcase an improvement from 10% to 14%. In the context of drop‐cast cells, characterized by a relatively thicker and spatially heterogeneous perovskite layer, maturation prompts alterations within the perovskite layer itself. Conversely, in the realm of inkjet solar cells boasting a thinner yet more uniform active layer thickness, maturation exerts distinctive impacts, primarily manifesting at the interfaces. The observed maturation phenomenon exhibits a dependence on the solar cell's architecture and morphology, underscoring the pivotal role of these aspects in determining the ensuing effects. These revelations offer illuminating insights into the intricate dynamics of PSCs and offer valuable guidance for the ongoing refinement of their performance.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3