Super‐Droplet‐Repellent Carbon‐Based Printable Perovskite Solar Cells

Author:

Mai Cuc Thi Kim1,Halme Janne2ORCID,Nurmi Heikki A.23ORCID,da Silva Aldeliane M.1ORCID,Lorite Gabriela S.1ORCID,Martineau David4,Narbey Stéphanie4,Mozaffari Naeimeh5ORCID,Ras Robin H. A.23ORCID,Hashmi Syed Ghufran1,Vuckovac Maja23ORCID

Affiliation:

1. Microelectronics Research Unit Faculty of Information Technology & Electrical Engineering University of Oulu Pentti Kaiteran katu 1 Oulu 90570 Finland

2. Department of Applied Physics Aalto University School of Science Konemiehentie 1 Espoo 02150 Finland

3. Centre of Excellence in Life‐Inspired Hybrid Materials (LIBER) Aalto University Espoo Finland

4. Solaronix SA Rue de l' Ouriette 129 Aubonne CH‐1170 Switzerland

5. Department of Materials Science and Engineering Monash University Clayton Victoria 3800 Australia

Abstract

AbstractDespite attractive cost‐effectiveness, scalability, and superior stability, carbon‐based printable perovskite solar cells (CPSCs) still face moisture‐induced degradation that limits their lifespan and commercial potential. Here, the moisture‐preventing mechanisms of thin nanostructured super‐repellent coating (advancing contact angle >167° and contact angle hysteresis 7°) integrated into CPSCs are investigated for different moisture forms (falling water droplets vs water vapor vs condensed water droplets). It is shown that unencapsulated super‐repellent CPSCs have superior performance under continuous droplet impact for 12 h (rain falling experiments) compared to unencapsulated pristine (uncoated) CPSCs that degrade within seconds. Contrary to falling water droplets, where super‐repellent coating serves as a shield, water vapor is found to physisorb through porous super‐repellent coating (room temperature and relative humidity, RH 65% and 85%) that increase the CPSCs performance for 21% during ≈43 d similarly to pristine CPSCs. It is further shown that water condensation forms within or below the super‐repellent coating (40 °C and RH 85%), followed by chemisorption and degradation of CPSCs. Because different forms of water have distinct effects on CPSC, it is suggested that future standard tests for repellent CPSCs should include rain falling and condensate formation tests. The findings will thus inspire the development of super‐repellent coatings for moisture prevention.

Funder

Jane ja Aatos Erkon Säätiö

European Research Council

Academy of Finland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3