Precise Tuning Near‐Infrared Photothermal Conversion of Ternary Cocrystals via Supramolecular Interactions

Author:

Wen Xinyi1,Chen Ye-Tao1,He Jiaxing1,Wang Bing1,Ye Xiaoting1,Guo Yan2,Ni Shaofei1,Chen Shunli1,Phillips David Lee3,Dang Li14,Li Ming-De14ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Shantou 515063 China

2. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China

3. Department of Chemistry University of Hong Kong Hong Kong 999077 China

4. Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China

Abstract

Effective utilization of solar energy through cocrystal strategy is still a considerable challenge. Herein, the ternary cocrystal strategy is subtly applied to broaden the absorption of cocrystals, resulting in an efficient solar photothermal conversion (PTC). Specifically, the donors of triphenylene (T) and perylene (P) and guest molecules anthracene (AT), pyrene (PY), and perylene (P) are self‐assembled with 7,7,8,8‐tetracyanoquinodimethane (TCNQ) to obtain five ternary cocrystals (AT‐T‐TCNQ, PY‐T‐T‐TCNQ, AT‐P‐TCNQ, PY‐P‐TCNQ, and P‐P‐TCNQ). The PTC of ternary cocrystals can be regulated by changing the number of benzene rings of donor and guest molecules, which may be attributed to the ππ and C–H···π intermolecular interactions. Femtosecond transient absorption and excited‐state theoretical calculations confirm that the intense ππ stacking interactions facilitate the light‐harvesting capability, while the weak C–H···π interactions are conducive to molecular stacking loosening and thus facilitate the rotation of C(C ≡ N)2, which promotes nonradiative transition to achieve the efficient PTC. As expected, the PTC efficiencies of AT‐T‐TCNQ, PY‐T‐TCNQ, AT‐P‐TCNQ, PY‐P‐TCNQ, and P‐P‐TCNQ are 59.62%, 63.07%, 81.72%, 79.06%, and 87.72%, respectively, under 808 nm irradiation. Due to the P‐P‐TCNQ having excellent near‐infrared PTC efficiency, it is applied in a solar‐driven interfacial heating evaporation system, gaining a decent evaporation efficiency (83.1%).

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Department of Education of Guangdong Province

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3