An efficient photothermal conversion material based on D‐A type luminophore for solar‐driven desalination

Author:

Yang Jun‐Cheng1ORCID,Wu Lin1,Wang Le1,Ren Runhua1,Chen Pu1,Qi Chunxuan1,Feng Hai‐Tao1ORCID,Tang Ben Zhong2

Affiliation:

1. AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering Baoji University of Arts and Sciences Baoji China

2. School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen (CUHK‐Shenzhen) Shenzhen China

Abstract

AbstractSolar‐driven interfacial evaporation is a promising technology for desalination. The photothermal conversion materials are at the core and play a key role in this field. Design of photothermal conversion materials based on organic dyes for desalination is still a challenge due to lack of efficient guiding strategy. Herein, a new D (donor)‐A (acceptor) type conjugated tetraphenylpyrazine (TPP) luminophore (namely TPP‐2IND) was prepared as a photothermal conversion molecule. It exhibited a broad absorption spectrum and strong ππ stacking in the solid state, resulting in efficient sunlight harvesting and boosting nonradiative decay. TPP‐2IND powder exhibited high photothermal efficiency upon 660 nm laser irradiation (0.9 W cm−2), and the surface temperature can reach to 200°C. Then, an interfacial heating system based on TPP‐2IND is established successfully. The water evaporation rate and the solar‐driven water evaporation efficiency were evaluated up to 1.04 kg m−2 h−1 and 65.8% under 1 sunlight, respectively. Thus, this novel solar‐driven heating system shows high potential for desalination and stimulates the development of advanced photothermal conversion materials.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3