Mitigating Delamination in Perovskite/Silicon Tandem Solar Modules

Author:

Bristow Helen1,Li Xiaole23,Babics Maxime1,Kosar Sofiia1,Pininti Anil Reddy1,Zhang Shanshan1,Vishal Badri1,Sarwade Shruti1,Razzaq Arsalan1,Said Ahmed Ali1,Lubineau Gilles23,De Wolf Stefaan1ORCID

Affiliation:

1. KAUST Solar Center Physical Sciences and Engineering Division (PSE) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia

2. Mechanics of Composites for Energy and Mobility Lab King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Kingdom of Saudi Arabia

3. Mechanical Engineering Program Physical Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Kingdom of Saudi Arabia

Abstract

As perovskite/silicon tandem solar cells head toward industrialization, one emerging challenge relates to the mechanical reliability of these organic–inorganic multilayer devices. Herein, the fracture toughness and interfacial strength of monolithic p–i–n perovskite/silicon tandems are assessed in the context of module integration. While the weakest layer in the tandem stack investigated is found to be C60, used here as electron‐transport layer (interfacial tensile strength of 0.64 MPa), more concerningly, the fracture energy of the C60/tin‐oxide interface is found to be only 1.2 J m−2. The low fracture toughness of perovskite/silicon tandems can encourage crack propagation and large‐scale delamination during processes used for their integration into modules such as cell cutting, interconnection, and vacuum lamination. By improving the tin oxide buffer layer properties and reducing sputtering‐induced internal stress (associated with the transparent top electrode deposition onto the tin the oxide buffer layer), the fracture energy is improved to over 160 J m−2. A second strategy to mitigate delamination due to the low fracture toughness of the cells is tailoring encapsulation and cell processing techniques specifically toward the perovskite/silicon tandem technology. In this work, a critical reliability issue, relevant for any perovskite‐based optoelectronic technology requiring device packaging, is addressed.

Funder

King Abdullah University of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3