Morphology Controlling of All‐Small‐Molecule Organic Solar Cells: From Donor Material Design to Device Engineering

Author:

Sun Xiaokang12,Lv Jie2,Zhang Chenyang23,Wang Kai3,Yang Chunming4,Hu Hanlin2ORCID,Ouyang Xiaoping1

Affiliation:

1. School of Materials Science and Engineering Xiangtan University Xiangtan 411105 China

2. Hoffman Institute of Advanced Materials Shenzhen Polytechnic Shenzhen 518000 China

3. Institute of Flexible Electronics (IFE) Northwestern Polytechnical University (NPU) Research & Development Institute of Northwestern Polytechnical University Shenzhen Xi'an 710072 China

4. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

Abstract

Compared to polymer‐based organic solar cells, all‐small‐molecule organic solar cells (ASM‐OSCs) have garnered significant attention due to their well‐defined chemical structures, lower batch‐to‐batch variation, straightforward synthesis and purification procedures, and easy to modulate properties. Recent developments in small molecule donors have enabled ASM‐OSCs to achieve power conversion efficiencies in excess of 17%, gradually approaching those of polymer‐based devices, and demonstrating considerable potential for commercialization. However, structural and morphological features in the all‐small‐molecule blend films, including crystallization behavior, phase separation, and molecular arrangement, play a crucial role in the photoelectric performance. This review systematically introduces and discusses recent advancements in ASM‐OSCs in terms of design strategies for novel small molecule donors and device engineering. Additionally, the correlation between active layer morphology and structure and device performance is analyzed. Finally, the challenges and prospects of ASM‐OSCs are discussed.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Commission

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3