CsPbBr3 Quantum Dots‐Sensitized Mesoporous TiO2 Electron Transport Layers for High‐Efficiency Perovskite Solar Cells

Author:

Duan Linrui12,Zhang Hong23,Eickemeyer Felix T.2,Gao Jing2,Zakeeruddin Shaik M.2,Grätzel Michael12,Luo Jingshan14ORCID

Affiliation:

1. Institute of Photoelectronic Thin Film Devices and Technology Solar Energy Research Center Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology Renewable Energy Conversion and Storage Center Nankai University Tianjin 300350 P. R. China

2. Laboratory of Photonics and Interfaces Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland

3. Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Institute of Optoelectronics Fudan University Shanghai 200433 P. R. China

4. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 P. R. China

Abstract

The carrier transport layer plays a critical role in high efficiency and stable perovskite solar cells (PSCs). Herein, CsPbBr3 quantum dots‐sensitized mesoporous TiO2 (CPB–TiO2) electron transport layer for fabricating high‐quality perovskite films with enhanced phase stability is developed. The CPB–TiO2 layer enhances the perovskite crystallinity, phase stability, and reduces the nonradiative carrier recombination in PSCs. As a result, the CPB–TiO2 significantly improves the power conversion efficiency of FAPbI3 PSCs from 23.11% to 24.46% and reduces the device hysteresis. The CPB–TiO2–FAPbI3 device shows enhanced stability, retaining 90% of its initial efficiency after 500 h operation at maximum power point tracking under 1 sun illumination, whereas the control device degrades to 80% of initial performance in the first 200 h. In addition, this strategy is applicable to CsPbI3 perovskite, which provides a new and general strategy for preparing high‐efficiency PSCs.

Funder

National Key Research and Development Program of China

Science Fund for Distinguished Young Scholars of Tianjin

China Scholarship Council

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3