Ultrathin Flexible Ge Solar Cells for Lattice‐Matched Thin‐Film InGaP/(In)GaAs/Ge Tandem Solar Cells

Author:

Moon Sunghyun1ORCID,Kim Kangho1,Kim Youngjo1,Kang Ho Kwan2,Park Kyung-Ho3,Lee Jaejin1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Ajou University Suwon 16499 Korea

2. Optical Device Division Korea Advanced Nano Fab Center (KANC) Suwon 16229 South Korea

3. Convergence Technology Division Korea Advanced Nano Fab Center (KANC) Suwon 16229 South Korea

Abstract

Ultrathin Ge single‐junction (1J) solar cells transferred onto a flexible substrate are envisioned to open up a novel lattice‐matched thin‐film InGaP/(In)GaAs/Ge tandem solar cell for enabling highly efficient, low‐cost, and light‐weight flexible devices. The ultrathin Ge 1J solar cell structures are epitaxially grown onto a GaAs substrate via a low‐pressure metal–organic chemical vapor deposition system using an isobutylgermane metalorganic source as a Ge precursor. A simple and fast epitaxial lift‐off method allows the epi structures to transfer onto the flexible substrates, by which 2 inch wafer‐scale flexible ultrathin Ge 1J solar cells with the mechanical stability under bending test (R = 12.5 mm) are fabricated. Their maximum power conversion efficiency (5.40%) is achieved with the optimum thickness of Ge p‐n junction as well as a delta‐doping technique that utilizes the multiple cycles of Ga‐dopant injection and halt during the growth of thick p‐Ge base layer. The power‐to‐weight ratio value of the ultrathin Ge 1J solar cells is 56.65 times higher than that of bulk‐type Ge solar cells, holding great potential to be used for the power sources of unmanned aerial vehicles as well as the portable and wearable devices.

Funder

Ministry of Trade, Industry and Energy

Ministry of Science and ICT, South Korea

Ministry of Education

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3