A fast malware feature selection approach using a hybrid of multi-linear and stepwise binary logistic regression
Author:
Affiliation:
1. School of Information Technology; Deakin University; Geelong 3216 Vic Australia
2. School of Mathematical and Geospatial Sciences; RMIT University; Melbourne 3000 Vic Australia
3. Charles Sturt University; Albury 2640 NSW Australia
Publisher
Wiley
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software
Reference51 articles.
1. McCombie S Pieprzyk J Watters P Cybercrime attribution: an eastern European case study The 7th Australian Digital Forensics Conference Perth, Australia 2009 41 51
2. Eureka: A Framework for Enabling Static Malware Analysis
3. Malware detection module using machine learning algorithms to assist in centralized security in enterprise networks;Singhal;International Journal of Network Security & Its Applications (IJNSA),2012
4. Behavioral detection of malware: from a survey towards an established taxonomy. Springer;Jacob;Journal in Computer Virology,,2008
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A systematic literature review on Windows malware detection: Techniques, research issues, and future directions;Journal of Systems and Software;2024-03
2. Behavior‐Based Data Exfiltration Detection Methods;Data Exfiltration Threats and Prevention Techniques;2023-05-19
3. An innovative disruptive malware detection and prediction of web vulnerability attackers using novel linear regression against logistic regression;INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING, AND TECHNOLOGY 2022: Conference Proceedings;2023
4. Application of Traditional Culture in Intelligent Advertising Design System in the Internet Era;Scientific Programming;2022-04-27
5. An Empirical Evaluation of Supervised Learning Methods for Network Malware Identification Based on Feature Selection;Complexity;2022-04-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3