Affiliation:
1. Computer Assisted Clinical Medicine, Medical Faculty Mannheim Heidelberg University Mannheim Germany
2. Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim Heidelberg University Mannheim Germany
Abstract
PurposeTo introduce dynamic mode decomposition (DMD) as a robust alternative for the assessment of pulmonary functional information from dynamic non‐contrast‐enhanced acquisitions.MethodsPulmonary fractional ventilation and normalized perfusion maps were obtained using DMD from simulated phantoms as well as in vivo dynamic acquisitions of healthy volunteers at 1.5T. The performance of DMD was compared with conventional Fourier decomposition (FD) and matrix pencil (MP) methods in estimating functional map values. The proposed method was evaluated based on estimated signal amplitude in functional maps across varying number of measurements.ResultsQuantitative assessments performed on phantoms and in vivo measurements indicate that DMD is capable of successfully obtaining pulmonary functional maps. Specifically, compared to FD and MP methods, DMD is able to reduce variations in estimated amplitudes across different number of measurements. This improvement is evident in the fractional ventilation and normalized perfusion maps obtain from phantom simulations with frequency variations and noise, as well as in the maps obtained from in vivo measurements.ConclusionsA robust method for accurately estimating pulmonary ventilation and perfusion related signal changes in dynamic acquisitions is presented. The proposed method uses DMD to obtain functional maps reliably, while reducing amplitude variations caused by differences in number of measurements.
Funder
Deutsche Forschungsgemeinschaft
Subject
Radiology, Nuclear Medicine and imaging
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献