Determination of moisture content and contaminated blank dried figs (Ficus carica L.) using dielectric property and artificial neural network

Author:

Shojaeyan Mina1,Banakar Ahmad1ORCID,Hashjin Teymour Tavakoli1,Shafiee Sahameh2

Affiliation:

1. Biosystems Engineering Department Tarbiat Modares University Tehran Iran

2. Department of Plant Science Norwegian University of Life Science As Norway

Abstract

AbstractDried figs are a garden produce that must be graded after harvesting. Moisture levels and contaminated blank are two of the most critical effective elements on the marketability of dried figs, and they are highly related to fig quality. In the present research, an intelligent system was employed to classify dried figs based on moisture content levels and infected blank fruits. Capacitance characteristics, average diameter, and fruit area were all taken into account in this study. The dried fig dielectric constant was measured at six different frequency levels: 12, 22, 32, 42, 52, and 62 MHz. The best frequency was then chosen using the improved distance evaluation feature selection approach. Image processing was also used to determine the average diameter and area of the figures. Following that, the dielectric constant of the most effective frequency, the average diameter, and the area of the fruit were used as input parameters in the artificial neural network classification model to classify and describe the moisture and porosity level of the dried fig. The most essential dielectric constant information relating to moisture and porosity level was at frequencies of 22 and 52 MHz, respectively. Finally, classification accuracy of 95.7% for moisture and 91.3% for porosity level was attained. The results demonstrated the excellent performance and capabilities of the proposed approach for rating the internal quality of dried figs.

Publisher

Wiley

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3