Affiliation:
1. Department of Mathematics Babasaheb Bhimrao Ambedkar University Lucknow Uttar Pradesh India
2. Department of Mechanical Engineering COER University Roorkee Uttarakhand India
3. Department of Mechanical Engineering Technical Education Department Uttar Pradesh Kanpur India
4. Department of Mechanical Engineering Texas A&M University College Station Texas USA
Abstract
AbstractThis paper presents an analysis of viscous fluids and a Rivlin–Ericksen (R‐E) viscoelastic fluid interface under the influence of heat and mass transfer, while both fluids are exposed to an axial electric field. The fluids are restricted within an annular region that is enclosed by two rigid cylinders. The outer section of the annular region holds the R‐E viscoelastic fluid, while the inner section is filled with the viscous fluid. To ascertain the correlation between perturbation growth and wavenumber, the theory of potential flow on viscoelastic–viscous fluids is applied, and the result is represented as a second‐order polynomial. This correlation is numerically solved using the Newton–Raphson method. Variables of viscous flow, such as electric field strength, heat transfer coefficient, viscoelasticity, viscosity, and so forth, are numerically studied. With an increase in electric field strength, the perturbation growth decays and expands for the particular combinations of permittivity and conductivity ratio, showing the dual effect of the axial electric field.
Subject
Fluid Flow and Transfer Processes,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献