Structure and mechanical properties of diamond‐like carbon films prepared by pulsed laser‐induced cathodic vacuum arc technique

Author:

Feng Xingguo1ORCID,Zheng Yu1,Wang Keliang1,Zheng Yugang1,Zhang Yanshuai1,Zhou Hui1

Affiliation:

1. Science and Technology on Vacuum Technology and Physical Laboratory Lanzhou Institute of Physics Lanzhou 730000 China

Abstract

Diamond‐like carbon (DLC) films are prepared by pulsed laser‐induced cathodic vacuum arc technique with various arc voltages. The purpose of the research is to investigate the influence of the arc voltage on the structure, mechanical, and tribological properties of DLC films. The results from Raman spectra and XPS show that with increasing arc voltage from 180 to 280 V, the sp3 content in the DLC film increases from 43.2 to 56.9 at%, then follows by a significant decrease with further increasing arc voltage to 330 V. The trend in the mechanical properties of DLC films correlates well with the sp3 content in the films. The maximum hardness, modulus, and adhesion critical load (Lc) of the DLC film is obtained in the film deposited at 280 V; the values of that are 46.4 GPa, 380.6 GPa, and 620 mN, respectively. The friction coefficient of the films is between 0.1 and 0.2, and the film deposited at 280 V has the minimum wear rate with a value of 3.2 × 10−17 m3/m.N. It is concluded that the DLC films with high sp3 content (ta‐C, tetrahedral amorphous carbon) not only have good mechanical properties but also have excellent tribological properties, which provides a promising application for wear resistance parts.

Publisher

Wiley

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3