A Photoreceptor‐Based Hydrogel with Red Light‐Responsive Reversible Sol‐Gel Transition as Transient Cellular Matrix

Author:

Hörner Maximilian12ORCID,Becker Jan12ORCID,Bohnert Rebecca12,Baños Miguel12,Jerez‐Longres Carolina123,Mühlhäuser Vanessa12,Härrer Daniel12,Wong Tin Wang4,Meier Matthias45,Weber Wilfried12678ORCID

Affiliation:

1. Signalling Research Centres BIOSS and CIBSS University of Freiburg Schänzlestrasse 18 79104 Freiburg Germany

2. Faculty of Biology University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany

3. SGBM – Spemann Graduate School of Biology and Medicine University of Freiburg Albertstrasse 19a 79104 Freiburg Germany

4. Helmholtz Pioneer Campus Helmholtz Zentrum Munich Ingolstädter Landstraße 1 85764 Neuherberg Germany

5. Centre for Biotechnology and Biomedicine University of Leipzig Deutscher Platz 5 04103 Leipzig Germany

6. INM – Leibniz Institute for New Materials Campus D2 2 66123 Saarbrücken Germany

7. Department of Materials Science and Engineering Saarland University 66123 Saarbrücken Germany

8. FMF – Freiburger Materialforschungszentrum University of Freiburg Stefan‐Meier‐Straße 21 79104 Freiburg Germany

Abstract

AbstractHydrogels with adjustable mechanical properties have been engineered as matrices for mammalian cells and allow the dynamic, mechano‐responsive manipulation of cell fate and function. Recent research yields hydrogels, where biological photoreceptors translated optical signals into a reversible and adjustable change in hydrogel mechanics. While their initial application provides important insights into mechanobiology, broader implementation is limited by a small dynamic range of addressable stiffness. Herein, this limitation is overcome by developing a photoreceptor‐based hydrogel with reversibly adjustable stiffness from ≈800 Pa to the sol state. The hydrogel is based on star‐shaped polyethylene glycol, functionalized with the red/far‐red light photoreceptor phytochrome B (PhyB), or phytochrome‐interacting factor 6 (PIF6). Upon illumination with red light, PhyB heterodimerizes with PIF6, thus crosslinking the polymers and resulting in gelation. However, upon illumination with far‐red light, the proteins dissociate and trigger a complete gel‐to‐sol transition. The hydrogel's light‐responsive mechanical properties are comprehensively characterized and it is applied as a reversible extracellular matrix for the spatiotemporally controlled deposition of mammalian cells within a microfluidic chip. It is anticipated that this technology will open new avenues for the site‐ and time‐specific positioning of cells and will contribute to overcome spatial restrictions.

Funder

European Commission

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3