Universal Homojunction Design for Colloidal Quantum Dot Infrared Photodetectors

Author:

Chen Menglu123ORCID,Xue Xiaomeng13,Qin Tianling1,Wen Chong1,Hao Qun123,Tang Xin123

Affiliation:

1. School of Optics and Photonics Beijing Institute of Technology No. 5, Zhongguancun South Street Beijing 100081 China

2. Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology Beijing 100081 China

3. Yangtze Delta Region Academy of Beijing Institute of Technology Jiaxing 314019 China

Abstract

AbstractDue to the appeal of room temperature operation and low‐cost potential, colloidal quantum dots (CQDs) have become an alternative to traditional epitaxial materials for infrared photodetection. However, various device structure designs and different functional material layers are required to obtain high photodetection performances for different infrared subranges. In this work, a straightforward method is introduced for building CQD p‐i‐n homojunction as well as the inverted n‐i‐p homojunction photodetector, by preparing various doping type and density CQD inks with a mixed phase ligand exchange method. It is approved that both normal and inverted homojunctions show the specific detectivity D* as high as 1012‐1011 Jones and external quantum efficiency near 90% at high operating temperature. It is also approved that the method works for multiple infrared subranges such as 1.5 µm that covers the conventional wavelength for fiber‐optical communication (1530–1565 nm), 1.3–1.9 µm that is about the short‐wave infrared (SWIR), 1.3–2.5 µm that covers extend SWIR (beyond the standard InGaAs sensors, 1.75 µm), and 3.6 µm that belongs to mid‐wave infrared (MWIR). Applications such as spectrometer and infrared imager are also demonstrated.

Funder

National Natural Science Foundation of China

Beijing Nova Program

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3