Infrared HOT Photodetectors: Status and Outlook

Author:

Rogalski Antoni1ORCID,Kopytko Małgorzata1,Hu Weida2ORCID,Martyniuk Piotr1ORCID

Affiliation:

1. Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland

2. State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China

Abstract

At the current stage of long-wavelength infrared (LWIR) detector technology development, the only commercially available detectors that operate at room temperature are thermal detectors. However, the efficiency of thermal detectors is modest: they exhibit a slow response time and are not very useful for multispectral detection. On the other hand, in order to reach better performance (higher detectivity, better response speed, and multispectral response), infrared (IR) photon detectors are used, requiring cryogenic cooling. This is a major obstacle to the wider use of IR technology. For this reason, significant efforts have been taken to increase the operating temperature, such as size, weight and power consumption (SWaP) reductions, resulting in lower IR system costs. Currently, efforts are aimed at developing photon-based infrared detectors, with performance being limited by background radiation noise. These requirements are formalized in the Law 19 standard for P-i-N HgCdTe photodiodes. In addition to typical semiconductor materials such as HgCdTe and type-II AIIIBV superlattices, new generations of materials (two-dimensional (2D) materials and colloidal quantum dots (CQDs)) distinguished by the physical properties required for infrared detection are being considered for future high-operating-temperature (HOT) IR devices. Based on the dark current density, responsivity and detectivity considerations, an attempt is made to determine the development of a next-gen IR photodetector in the near future.

Funder

National Science Center

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3