Overcoming the Transport Limitations of Photopolymer‐Derived Architected Carbon

Author:

Baglo Kjetil1ORCID,Sauermoser Marco2ORCID,Lid Markus2ORCID,Paschke Thomas3,Afif Abdulla Bin2ORCID,Lunzer Markus4ORCID,Flaten Andreas1,Steinert Martin2ORCID,Bock Robert5ORCID,Torgersen Jan1ORCID

Affiliation:

1. Chair of Materials Science Department of Materials Engineering TUM School of Engineering and Design Technical University of Munich Boltzmannstraße 15 85748 Garching bei München Bavaria Germany

2. Department of Mechanical and Industrial Engineering Norwegian University of Science and Technology Richard Birkelands vei 2B Trondheim Sør Trøndelag 7491 Norway

3. TA Instruments Waters LLC Altendorfstr. 10 32609 Hüllhorst Nordrhein‐ Westfalen Germany

4. Materials Development UpNano GmbH 1030 Vienna Modecenterstrasse 22/D36 Austria

5. Safety of Gas Storage Systems Federal Institute for Materials Research and Testing (BAM) 12205 Berlin Unter den Eichen 87 Germany

Abstract

AbstractPhotopolymer derived carbon grows in popularity, yet the range in available feature sizes is limited. Herein, the focus is on expanding the field to low surface to volume ratio (SVR) structures. A high temperature acrylic photopolymerizable precursor with FTIR and DSC is described and a thermal inert‐gas treatment is developed for producing architected carbon in the mm scale with SVR of 1.38×10−3 µm−1. Based on thermogravimetric analysis and mass spectrometry, two thermal regimes with activation energies of ≈79 and 169 kJ mol−1 are distinguished, which is reasoned with mechanisms during the polymer's morphologic conversion between 300 and 500 °C. The temperature range of the major dimensional shrinkage (300–440 °C, 50%) does not match the range of the largest alteration in elemental composition (440–600 °C, O/C 0.25–0.087%). The insights lead to an optimized thermal treatment with an initial ramp (2 °C min−1 to 350 °C), isothermal hold (14 h), post hold ramp (0.5 °C min−1 to 440 °C) and final ramp (10 °C min−1 to 1000 °C). The resulting carbon structures are dimensionally stable, non‐porous at the µm scale, and comprise an unprecedented variation in feature sizes (from mm to µm scale). The findings shall advance architected carbon to industrially relevant scales.

Funder

European Research Council

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3