Affiliation:
1. Future Energy and Innovation Laboratory Central European Institute of Technology Brno University of Technology Purkyňova 123 Brno 61200 Czech Republic
2. Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei‐ro, Seodaemun‐gu Seoul South Korea 03722
3. Faculty of Electrical Engineering and Computer Science VSB – Technical University of Ostrava 17. listopadu 2172/15 Ostrava 70800 Czech Republic
Abstract
AbstractBroadening scope of 3D printing technology is recently identified as a potential strategy to mitigate concerns in the light of rising energy crisis and environmental imbalances. The importance of ammonia as a hydrogen carrier is well known and, in the context of 3D printing, designing and fabrication of electrode substrates for ammonia synthesis from nitrate sources will present a twofold advantage toward addressing the energy crisis and also limiting the harmful effect of excessive nitrate from the environment. Studies in the direction of employing 3D printed catalysts or reactors for ammonia production have been rarely reported. Thus, in this perspective article, the possibilities of engineering several 3D printed electrocatalysts for nitrate reduction to ammonia via various techniques are discussed and experimental demonstrations to substantiate the potential of 3D printed electrocatalysts toward ammonia production are provided, for the first time. In addition, postfabrication treatments, modification, and patterned coating of 3D printed substrates using active materials are also discussed along with the possibilities of fabricating catalysts for ammonia synthesis via nitrogen reduction reaction. Certain limitations and possible solutions of this printing technology for ammonia production are discussed along with the future outlook. Such timely discussions will be interesting for researchers and scientists for enhancing further possibilities toward broadening this field and toward other catalytic applications.
Funder
Grantová Agentura České Republiky
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献