Workload prediction based on improved error correlation logistic regression algorithm and Cross‐TRCN of spatiotemporal neural network

Author:

Wan Xin1,Huang Xiang1,Wang Fuzhi1

Affiliation:

1. CHN Energy Dadu River Big Data Service CO., Ltd Chengdu Sichuan China

Abstract

AbstractIn view of the randomness of user network usage behavior in data centers, which leads to a large randomness in power load, and considering that a single randomness processing method is usually difficult to fully characterize the uncertain characteristics of the system, this paper proposes a dual fusion prediction analysis model based on an improved error correlation logic regression algorithm and a novel spatiotemporal neural network structure called Cross‐TRCN. Two weight coefficients λ1 and λ2 are introduced to fuse the prediction results with different long‐term sequence prediction performance, thereby further eliminating the influence of random errors. The results show that it is feasible to predict the workload of data centers based on the improved error correlation logic regression algorithm and the innovative spatiotemporal neural network structure Cross‐TRCN.

Publisher

Wiley

Reference27 articles.

1. XiaoliC.China energy big data report (2018). Beijing: Energy Intelligence Research Center;2018.

2. Study on evaluation method for new energy big data service project applying improved TOPSIS;Chen R;Electr Power Constr,2021

3. Workload forecasting and energy state estimation in cloud data centres: ML-centric approach

4. Unidirectional and Bidirectional LSTM Models for Short-Term Traffic Prediction

5. Improving conversion efficiency of solar cells by using antireflection film with composite grating structure;Zhou B;J Wenzhou Univ (Natural Science Edition),2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3