Consistent Thermal Conductivities of Spring‐Like Structured Polydimethylsiloxane Composites under Large Deformation

Author:

Guo Yongqiang1,Wang Shuangshuang1,Zhang Haitian1,Guo Hua1,He MuKun1,Ruan Kunpeng1,Yu Ze1,Wang Guang‐Sheng2,Qiu Hua1,Gu Junwei1ORCID

Affiliation:

1. Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China

2. School of Chemistry Beihang University Beijing 100191 P. R. China

Abstract

AbstractFlexible and highly thermally conductive materials with consistent thermal conductivity (λ) during large deformation are urgently required to address the heat accumulation in flexible electronics. In this study, spring‐like thermal conduction pathways of silver nanowire (S‐AgNW) fabricated by 3D printing are compounded with polydimethylsiloxane (PDMS) to prepare S‐AgNW/PDMS composites with excellent and consistent λ during deformation. The S‐AgNW/PDMS composites exhibit a λ of 7.63 W m−1 K−1 at an AgNW amount of 20 vol%, which is ≈42 times that of PDMS (0.18 W m−1 K−1) and higher than that of AgNW/PDMS composites with the same amount and random dispersion of AgNW (R‐AgNW/PDMS) (5.37 W m−1 K−1). Variations in the λ of 20 vol% S‐AgNW/PDMS composites are less than 2% under a deformation of 200% elongation, 50% compression, or 180° bending, which benefits from the large deformation characteristics of S‐AgNW. The heat‐transfer coefficient (0.29 W cm−2 K−1) of 20 vol% S‐AgNW/PDMS composites is ≈1.3 times that of the 20 vol% R‐AgNW/PDMS composites, which reduces the temperature of a full‐stressed central processing unit by 6.8 °C compared to that using the 20 vol% R‐AgNW/PDMS composites as a thermally conductive material in the central processing unit.

Funder

Natural Science Foundation of Chongqing

Fundamental Research Funds for the Central Universities

Natural Science Basic Research Program of Shaanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3