Achieving All‐Plateau and High‐Capacity Sodium Insertion in Topological Graphitized Carbon

Author:

He Xiang‐Xi12,Lai Wei‐Hong3,Liang Yaru4,Zhao Jia‐Hua12,Yang Zhuo3,Peng Jian3,Liu Xiao‐Hao2,Wang Yun‐Xiao3,Qiao Yun1,Li Li15,Wu Xingqiao26ORCID,Chou Shu‐Lei26ORCID

Affiliation:

1. School of Environmental and Chemical Engineering Shanghai University 200444 Shanghai China

2. Institute for Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China

3. Institute for Superconducting and Electronic Materials Australian Institute of Innovative Materials Innovation Campus University of Wollongong Wollongong NSW 2500 Australia

4. School of Materials Science and Engineering Xiangtan University 411105 Hunan China

5. Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China

6. Wenzhou Key Laboratory of Sodium‐Ion Batteries Wenzhou University Technology Innovation Institute for Carbon Neutralization Wenzhou Zhejiang 325035 China

Abstract

AbstractHard carbon anodes with all‐plateau capacities below 0.1 V are prerequisites to achieve high‐energy‐density sodium‐ion storage, which holds promise for future sustainable energy technologies. However, challenges in removing defects and improving the insertion of sodium ions head off the development of hard carbon to achieve this goal. Herein, a highly cross‐linked topological graphitized carbon using biomass corn cobs through a two‐step rapid thermal‐annealing strategy is reported. The topological graphitized carbon constructed with long‐range graphene nanoribbons and cavities/tunnels provides a multidirectional insertion of sodium ions whilst eliminating defects to absorb sodium ions at the high voltage region. Evidence from advanced techniques including in situ XRD, in situ Raman, and in situ/ex situ transmission electron microscopy (TEM) indicates that the sodium ions' insertion and Na cluster formation occurred between curved topological graphite layers and in the topological cavity of adjacent graphite band entanglements. The reported topological insertion mechanism enables outstanding battery performance with a single full low‐voltage plateau capacity of 290 mAh g−1, which is almost 97% of the total capacity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3