A Universal Microscopic Patterned Doping Method for Perovskite Enables Ultrafast, Self‐Powered, Ultrasmall Perovskite Photodiodes

Author:

Cheng Jiangong1ORCID,Ma Yang2,Zhou Wencai1,Zhang Tong1,Li Wenling1,Zhang Xiaobo3,Yan Hui1,Li Jinpeng4,Zheng Zilong1,Chen Xiaoqing2ORCID,Zhang Yongzhe2

Affiliation:

1. College of Material Sciences and Engineering Beijing University of Technology Beijing 100124 China

2. Key Laboratory of Optoelectronics Technology College of Microelectronics Faculty of Information Technology Beijing University of Technology Beijing 100124 China

3. School of Physics and Engineering Henan University of Science and Technology 263 Kaiyuan Avenue Luoyang 471003 China

4. Key Laboratory of Luminescence and Optical Information Ministry of Education School of Physical Science and Engineering Beijing Jiaotong University Beijing 100044 China

Abstract

AbstractNovel metal halide perovskite is proven to be a promising optoelectronic material. However, fabricating microscopic perovskite devices is still challenging because the perovskite is soluble with the photoresist, which conflicts with conventional microfabrication technology. The size of presently reported perovskite devices is about 50 µm. Limited by the large size of perovskite optoelectronic devices, they cannot be readily adopted in the fields of imaging, display, etc. Herein a universal microscopic patterned doping method is proposed, which can realize microscale perovskite devices. Rather than by the conventional doping method, in this study the local Fermi level of perovskite is modulated by the redistributing intrinsic ion defects via a polling voltage. A satisfactorily stable polarized ion distribution can be achieved by optimization of the perovskite material and polling voltage, resulting in ultrafast (40 µs), self‐powered microscale (2 µm) photodiodes. This work sheds light on a route to fabricate integrated perovskite optoelectronic chips.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3