In‐Operando Spatiotemporal Imaging of Coupled Film‐Substrate Elastodynamics During an Insulator‐to‐Metal Transition

Author:

Stone Greg1,Shi Yin1,Jerry Matthew1,Stoica Vladimir1,Paik Hanjong2,Cai Zhonghou3,Schlom Darrell G.2,Engel‐Herbert Roman4,Datta Suman5,Wen Haidan6,Chen Long‐Qing1,Gopalan Venkatraman1ORCID

Affiliation:

1. Department of Materials Science and Engineering and Electrical Engineering Pennsylvania State University University Park Pennsylvania 16802 USA

2. Department of Materials Science and Engineering Cornell University Ithaca NY 14853 USA

3. Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA

4. Paul‐Drude‐Institut für Festkörperelektronik Leibniz‐Institut im Forschungsverbund Berlin e.V Hausvogteiplatz 5 10117 Berlin Germany

5. School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332 USA

6. Materials Science Division and Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA

Abstract

AbstractThe drive toward non‐von Neumann device architectures has led to an intense focus on insulator‐to‐metal (IMT) and the converse metal‐to‐insulator (MIT) transitions. Studies of electric field‐driven IMT in the prototypical VO2 thin‐film channel devices are largely focused on the electrical and elastic responses of the films, but the response of the corresponding TiO2 substrate is often overlooked, since it is nominally expected to be electrically passive and elastically rigid. Here, in‐operando spatiotemporal imaging of the coupled elastodynamics using X‐ray diffraction microscopy of a VO2 film channel device on TiO2 substrate reveals two new surprises. First, the film channel bulges during the IMT, the opposite of the expected shrinking in the film undergoing IMT. Second, a microns thick proximal layer in the substrate also coherently bulges accompanying the IMT in the film, which is completely unexpected. Phase‐field simulations of coupled IMT, oxygen vacancy electronic dynamics, and electronic carrier diffusion incorporating thermal and strain effects suggest that the observed elastodynamics can be explained by the known naturally occurring oxygen vacancies that rapidly ionize (and deionize) in concert with the IMT (MIT). Fast electrical‐triggering of the IMT via ionizing defects and an active “IMT‐like” substrate layer are critical aspects to consider in device applications.

Funder

National Science Foundation

U.S. Department of Energy

Basic Energy Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3