Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions

Author:

Yang Zheng1,Ko Changhyun1,Ramanathan Shriram1

Affiliation:

1. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138;

Abstract

Although phase transitions have long been a centerpiece of condensed matter materials science studies, a number of recent efforts focus on potentially exploiting the resulting functional property changes in novel electronics and photonics as well as understanding emergent phenomena. This is quite timely, given a grand challenge in twenty-first-century physical sciences is related to enabling continued advances in information processing and storage beyond conventional CMOS scaling. In this brief review, we discuss synthesis of strongly correlated oxides, mechanisms of metal-insulator transitions, and exploratory electron devices that are being studied. Particular emphasis is placed on vanadium dioxide, which undergoes a sharp metal-insulator transition near room temperature at ultrafast timescales. The article begins with an introduction to metal-insulator transition in oxides, followed by a brief discussion on the mechanisms leading to the phase transition. The role of materials synthesis in influencing functional properties is discussed briefly. Recent efforts on realizing novel devices such as field effect switches, optical detectors, nonlinear circuit components, and solid-state sensors are reviewed. The article concludes with a brief discussion on future research directions that may be worth consideration.

Publisher

Annual Reviews

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3