Piezoionic Elastomers by Phase and Interface Engineering for High‐Performance Energy‐Harvesting Ionotronics

Author:

Zhu Weiyan1,Wu Baohu2,Lei Zhouyue1,Wu Peiyi1ORCID

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry and Chemical Engineering Center for Advanced Low‐Dimension Materials Donghua University Shanghai 201620 China

2. Jülich Centre for Neutron Science (JCNS) at Heinz Maier‐Leibnitz Zentrum (MLZ) Forschungszentrum Jülich Lichtenbergstr. 1 85748 Garching Germany

Abstract

AbstractPiezoionic materials play a pivotal role in energy‐harvesting ionotronics. However, a persistent challenge lies in balancing the structural requirements for voltage generation, current conduction, and mechanical adaptability. The conventional approach of employing crystalline heterostructures for stress concentration and localized charge separation, while effective for voltage generation, often compromises the stretchability and long‐range charge transport found in homogeneous quasisolid states. Herein, phase and interface engineering strategy is introduced to address this dilemma and a piezoionic elastomer is presented that seamlessly integrates ionic liquids and ionic plastic crystals, forming a finely tuned microphase‐separated structure with an intermediate phase. This approach promotes charge separation via stress concentration among hard phases while leveraging the high ionic charge mobility in soft and intermediate phases. Impressively, the elastomer achieves an extraordinary piezoionic coefficient of about 6.0 mV kPa−1, a more than threefold improvement over current hydrogels and ionogels. The resulting power density of 1.3 µW cm−3 sets a new benchmark, exceeding that of state‐of‐the‐art piezoionic gels. Notably, this elastomer combines outstanding stretchability, remarkable toughness, and rapid self‐healing capability, underscoring its potential for real‐world applications. This work may represent a stride toward mechanically robust energy harvesting systems and provide insights into ionotronic systems for human–machine interaction.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3