Piezoionic mechanoreceptors: Force-induced current generation in hydrogels

Author:

Dobashi Yuta123ORCID,Yao Dickson1,Petel Yael4ORCID,Nguyen Tan Ngoc15,Sarwar Mirza Saquib15,Thabet Yacine1ORCID,Ng Cliff L. W.14ORCID,Scabeni Glitz Ettore1ORCID,Nguyen Giao Tran Minh6ORCID,Plesse Cédric6ORCID,Vidal Frédéric6ORCID,Michal Carl A.47ORCID,Madden John D. W.125ORCID

Affiliation:

1. Advanced Materials and Process Engineering Laboratory, University of British Columbia, Vancouver, BC, Canada.

2. School of Biomedical Engineering, Faculty of Applied Science, University of British Columbia, Vancouver, BC, Canada.

3. Institute of Medical Science, University of Toronto, Toronto, ON, Canada.

4. Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.

5. Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.

6. CY Cergy Paris Université, CY Advanced Studies, LPPI, 5 mail Gay Lussac, Neuville sur Oise, F-95031 Cergy-Pontoise Cedex, France.

7. Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.

Abstract

The human somatosensory network relies on ionic currents to sense, transmit, and process tactile information. We investigate hydrogels that similarly transduce pressure into ionic currents, forming a piezoionic skin. As in rapid- and slow-adapting mechanoreceptors, piezoionic currents can vary widely in duration, from milliseconds to hundreds of seconds. These currents are shown to elicit direct neuromodulation and muscle excitation, suggesting a path toward bionic sensory interfaces. The signal magnitude and duration depend on cationic and anionic mobility differences. Patterned hydrogel films with gradients of fixed charge provide voltage offsets akin to cell potentials. The combined effects enable the creation of self-powered and ultrasoft piezoionic mechanoreceptors that generate a charge density four to six orders of magnitude higher than those of triboelectric and piezoelectric devices.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3