Affiliation:
1. Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Shanghai Key Laboratory of Functional Materials Chemistry Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
2. State Key Laboratory of Integrated Optoelectronics Key Laboratory of Automobile Materials of Ministry of Education School of Materials Science and Engineering Jilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy Materials Jilin University Changchun 130012 China
Abstract
AbstractHalide diffusion across the charge‐transporting layer followed by a reaction with metal electrode represents a critical factor limiting the long‐term stability of perovskite solar cells (PSCs). In this work, a supramolecular strategy with surface anion complexation is reported for enhancing the light and thermal stability of perovskite films, as well as devices. Calix[4]pyrrole (C[4]P) is demonstrated as a unique anion‐binding agent for stabilizing the structure of perovskite by anchoring surface halides, which increases the activation energy for halide migration, thus effectively suppressing the halide–metal electrode reactions. The C[4]P‐stabilized perovskite films preserve their initial morphology after ageing at 85 °C or under 1 sun illumination in humid air over 50 h, significantly outperforming the control samples. This strategy radically tackles the halide outward‐diffusion issue without sacrificing charge extraction. Inverted‐structured PSCs based on C[4]P modified formamidinium–cesium perovskite exhibit a champion power conversion efficiency of over 23%. The lifespans of unsealed PSCs are unprecedentedly prolonged from dozens of hours to over 2000 h under operation (ISOS‐L‐1) and 85 °C ageing (ISOS‐D‐2). When subjected to a harsher protocol of ISOS‐L‐2 with both light and thermal stresses, the C[4]P‐based PSCs maintain 87% of original efficiency after ageing for 500 h.
Funder
National Natural Science Foundation of China
Project 211
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献