Heat-triggered Dynamic Self-healing Framework for Variable-temperature Stable Perovskite Solar Cells
Author:
Affiliation:
1. Henan University
2. Helmholtz-Zentrum Berlin für Materialien und Energie
3. Henan Normal University
4. Chinese Academy of Sciences
5. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
6. Xiamen University
Abstract
Metal halide perovskite solar cells (PSCs) are promising as the next-generation photovoltaic technology. However, the inferior stability under various temperatures remains a significant obstacle to commercialization. Here, we implement a heat-triggered dynamic self-healing framework (HDSF) to repair defects at grain boundaries caused by thermal variability, enhancing PSCs' temperature stability. HDSF, distributed at the grain boundaries and surface of the perovskite film, stabilizes the perovskite lattice and releases the perovskite crystal stress through the dynamic exchange reaction and shape memory effect of sulfide bonds. The resultant PSCs achieved a power-conversion efficiency (PCE) of 26.32% (certified 25.84%) with elevated temperature stability, retaining 94.2% of the initial PCE after 500 h at 85℃. In a variable temperature cycling test (between −40℃ and 80℃), the HDSF-treated device retained 87.6% of its initial PCE at −40℃ and 92.6% at 80℃ after 160 thermal cycles. This heat-triggered dynamic self-healing strategy could significantly enhance the reliability of PSCs in application scenarios.
Publisher
Springer Science and Business Media LLC
Reference74 articles.
1. Best Research-Cell Efficiency Chart (NREL, 2024); www.nrel.gov/pv/cell-efficiency.html.
2. Concurrent top and buried surface optimization for flexible perovskite solar cells with high efficiency and stability;Liu C;Adv. Funct. Mater.,2023
3. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules;Fei C;Science,2023
4. Immobilizing surface halide in perovskite solar cells via Calix[4]pyrrole;Guo H;Adv. Mater.,2023
5. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells;Ma C;Science,2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3