Achieving Reliable and Ultrafast Memristors via Artificial Filaments in Silk Fibroin

Author:

Li Zishun1ORCID,Wang Jiaqi1,Xu Lanxin1,Wang Li2,Shang Hongpeng1,Ying Haoting1,Zhao Yingjie1,Wen Liaoyong13,Guo Chengchen134ORCID,Zheng Xiaorui13ORCID

Affiliation:

1. School of Engineering Westlake University Hangzhou Zhejiang 310030 China

2. Institute of Physics Chinese Academy of Sciences Beijing 100190 China

3. Research Center for Industries of the Future Westlake University Hangzhou Zhejiang 310030 China

4. Westlake Laboratory of Life Sciences and Biomedicine Hangzhou Zhejiang 310024 China

Abstract

AbstractThe practical implementation of memristors in neuromorphic computing and biomimetic sensing suffers from unexpected temporal and spatial variations due to the stochastic formation and rupture of conductive filaments (CFs). Here, the biocompatible silk fibroin (SF) is patterned with an on‐demand nanocone array by using thermal scanning probe lithography (t‐SPL) to guide and confine the growth of CFs in the silver/SF/gold (Ag/SF/Au) memristor. Benefiting from the high fabrication controllability, cycle‐to‐cycle (temporal) standard deviation of the set voltage for the structured memristor is significantly reduced by ≈95.5% (from 1.535 to 0.0686 V) and the device‐to‐device (spatial) standard deviation is also reduced to 0.0648 V. Besides, the statistical relationship between the structural nanocone design and the resultant performance is confirmed, optimizing at the small operation voltage (≈0.5 V) and current (100 nA), ultrafast switching speed (sub‐100 ns), large on/off ratio (104), and the smallest switching slope (SS < 0.01 mV dec−1). Finally, the short‐term plasticity and leaky integrated‐and‐fire behavior are emulated, and a reliable thermal nociceptor system is demonstrated for practical neuromorphic applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3