Deciphering Adverse Detrapped Hole Transfer in Hot‐Electron Photoelectric Conversion at Infrared Wavelengths

Author:

Yu Yuanfang1,Gao Lei1,Niu Xianghong2,Liu Kaiyang1,Li Ruizhi1,Yang Dandan34,Zeng Haibo4,Wang Hui‐Qiong56,Ni Zhenhua17ORCID,Lu Junpeng1ORCID

Affiliation:

1. School of Physics and Key Laboratory of MEMS of the Ministry of Education Southeast University Nanjing 211189 P. R. China

2. New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science Nanjing University of Posts and Telecommunications Nanjing 210023 P. R. China

3. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China

4. Institute of Optoelectronics and Nanomaterials School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China

5. Department of Physics and Department of New Energy Science and Engineering Xiamen University Malaysia Sepang 43900 Malaysia

6. Department of Physics Xiamen University Xiamen 361005 P. R. China

7. Purple Mountain Laboratories Nanjing 211111 P. R. China

Abstract

AbstractHot‐carrier devices are promising alternatives for enabling path breaking photoelectric conversion. However, existing hot‐carrier devices suffer from low efficiencies, particularly in the infrared region, and ambiguous physical mechanisms. In this work, the competitive interfacial transfer mechanisms of detrapped holes and hot electrons in hot‐carrier devices are discovered. Through photocurrent polarity research and optical‐pump–THz‐probe (OPTP) spectroscopy, it is verified that detrapped hole transfer (DHT) and hot‐electron transfer (HET) dominate the low‐ and high‐density excitation responses, respectively. The photocurrent ratio assigned to DHT and HET increases from 6.6% to over 1133.3% as the illumination intensity decreases. DHT induces severe degeneration of the external quantum efficiency (EQE), especially at low illumination intensities. The EQE of a hot‐electron device can theoretically increase by over two orders of magnitude at 10 mW cm−2 through DHT elimination. The OPTP results show that competitive transfer arises from the carrier oscillation type and carrier‐density‐related Coulomb screening. The screening intensity determines the excitation weight and hot‐electron cooling scenes and thereby the transfer dynamics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Jiangsu Planned Projects for Postdoctoral Research Funds

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3