Hot‐carrier engineering for two‐dimensional integrated infrared optoelectronics

Author:

Yu Yuanfang1,Zhang Jialin2,Wang Lianhui1,Ni Zhenhua2ORCID,Lu Junpeng2ORCID,Gao Li13

Affiliation:

1. State Key Laboratory for Organic Electronics and Information Displays Institute of Advanced Materials, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications Nanjing China

2. Key Laboratory of Quantum Materials and Devices of Ministry of Education School of Physics, Southeast University Nanjing China

3. School of Science, Nanjing University of Posts and Telecommunications Nanjing China

Abstract

AbstractPlasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices. The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors, enabling detection of sub‐bandgap infrared photons. By harvesting hot carriers prior to thermalization, energy dissipation is minimized, leading to highly efficient photoelectric conversion. Distinguished from conventional band‐edge carriers, the ultrafast interfacial transfer and ballistic transport of hot carriers present unprecedented opportunities for high‐speed photoelectric conversion. However, a complete description on the underlying mechanism of hot‐carrier infrared optoelectronic device is still lacking, and the utilization of this strategy for tailoring infrared response is in its early stages. This review aims to provide a comprehensive overview of the generation, transfer and transport dynamics of hot carriers. Basic principles of hot‐carrier conversion in heterostructures are discussed in detail. In addition, progresses of two‐dimensional (2D) infrared hot‐carrier optoelectronic devices are summarized, with a specific emphasis on photodetectors, solar cells, light‐emitting devices and novel functionalities through hot‐carrier engineering. Furthermore, challenges and prospects of hot‐carrier device towards infrared applications are highlighted.image

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3