Cation‐Disorder Engineering Promotes Efficient Charge‐Carrier Transport in AgBiS2 Nanocrystal Films

Author:

Righetto Marcello1,Wang Yongjie2,Elmestekawy Karim A.1,Xia Chelsea Q.1,Johnston Michael B.1,Konstantatos Gerasimos23,Herz Laura M.14ORCID

Affiliation:

1. Department of Physics University of Oxford Clarendon Laboratory Parks Road Oxford OX1 3PU UK

2. ICFO—Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Castelldefels 08860 Barcelona Spain

3. ICREA‐Institució Catalana de Recerca i Estudia Avançats Lluis Companys 23 Barcelona 08010 Spain

4. Institute for Advanced Study Technical University of Munich Lichtenbergstrasse 2a D‐85748 Garching Germany

Abstract

AbstractEfficient charge‐carrier transport is critical to the success of emergent semiconductors in photovoltaic applications. So far, disorder has been considered detrimental for charge‐carrier transport, lowering mobilities, and causing fast recombination. This work demonstrates that, when properly engineered, cation disorder in a multinary chalcogenide semiconductor can considerably enhance the charge‐carrier mobility and extend the charge‐carrier lifetime. Here, the properties of AgBiS2 nanocrystals (NCs) are explored as a function of Ag and Bi cation‐ordering, which can be modified via thermal‐annealing. Local Ag‐rich and Bi‐rich domains formed during hot‐injection synthesis are transformed to induce homogeneous disorder (random Ag‐Bi distribution). Such cation‐disorder engineering results in a sixfold increase in the charge‐carrier mobility, reaching ≈2.7 cm2 V−1 s−1 in AgBiS2 NC thin films. It is further demonstrated that homogeneous cation disorder reduces charge‐carrier localization, a hallmark of charge‐carrier transport recently observed in silver‐bismuth semiconductors. This work proposes that cation‐disorder engineering flattens the disordered electronic landscape, removing tail states that would otherwise exacerbate Anderson localization of small polaronic states. Together, these findings unravel how cation‐disorder engineering in multinary semiconductors can enhance the efficiency of renewable energy applications.

Funder

Engineering and Physical Sciences Research Council

Agencia Estatal de Investigación

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3