Comprehensive Investigation of the Crystal Structure of Cation‐Disordered Li3VO4 as a High‐Rate Anode Material: Unveiling the Dichotomy between Order and Disorder

Author:

Matsumura Keisuke1ORCID,Rozier Patrick23ORCID,Iwama Etsuro145ORCID,Ohara Koji6ORCID,Orikasa Yuki7ORCID,Naoi Wako8,Simon Patrice23ORCID,Naoi Katsuhiko145ORCID

Affiliation:

1. Institute of Global Innovation Research Tokyo University of Agriculture and Technology 2‐24‐16 Naka‐cho Koganei Tokyo 184–8588 Japan

2. CIRIMAT UMR‐CNRS 5085 Université Toulouse 3 – Paul Sabatier 118 Route de Narbonne Cedex 9 Toulouse 31062 France

3. Réseau sur le Stockage Électrochimique de l'Energie (RS2E) FR CNRS 3459, 33 rue Saint Leu Amiens 80039 France

4. Department of Applied Chemistry Tokyo University of Agriculture and Technology 2‐24‐16 Naka‐cho Koganei Tokyo 184–8588 Japan

5. Advanced Capacitor Research Center Tokyo University of Agriculture and Technology 2‐24‐16 Naka‐cho Koganei Tokyo 184–8588 Japan

6. Faculty of Materials for Energy Shimane University 1060 Nishikawatsu‐cho Matsue Shimane 690–8504 Japan

7. Department of Applied Chemistry College of Life Sciences Ritsumeikan University 1‐1‐1 Noji‐higashi Kusatsu Shiga 525–8577 Japan

8. Division of Art and Innovative Technologies K&W Inc. 1‐3‐16‐901 Higashi Kunitachi Tokyo 186‐0002 Japan

Abstract

AbstractThis study investigates mechanochemical synthesis and cation‐disordering mechanism of wurtzite‐type Li3VO4 (LVO), highlighting its promise as a high‐performance anode material for lithium‐ion batteries and hybrid supercapacitors. Mechanochemical treatment of pristine LVO using a high‐energy ball mill results in a “pure cation‐disordered” LVO phase, allowing for meticulous analysis of cation arrangement. The X‐ray and neutron diffraction study demonstrates progressive loss of order in LVO crystal with increasing milling duration. High‐resolution transmission electron microscopy reveals disrupted lattice fringes, indicating cationic misalignment. Pair‐distribution function analysis confirms loss of cation arrangements and the presence of short‐range order. Combination of these multiple analytical techniques achieves a comprehensive understanding of cation regularity and clearly demonstrates order/disorder dichotomy in cation‐disordered materials, ranging from short (<8 Å) to middle‐long range (8–30 Å), using an integrated superstructure model of the cation‐disordered LVO crystals. Electrochemical testing reveals that mechanochemically treated LVO exhibits superior rate capability, with a 70% capacity retention at a high current density of 50C‐rate. Lithium diffusion coefficient measurements demonstrate enhanced lithium‐ion mobility in the mechanochemically treated LVO, attributed to cation‐disordering effect. These findings provide valuable insights into mechanochemical cation‐disordering in LVO, presenting its potential as an efficient anode material for lithium‐ion–based electrochemical energy storage.

Funder

Japan Proton Accelerator Research Complex

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3