Organic Electroactive Materials for Aqueous Redox Flow Batteries

Author:

Yang Gaojing1ORCID,Zhu Yaxun1,Hao Zhimeng1,Lu Yong1ORCID,Zhao Qing1ORCID,Zhang Kai1ORCID,Chen Jun1ORCID

Affiliation:

1. Frontiers Science Center for New Organic Matter Haihe Laboratory of Sustainable Chemical Transformations Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources College of Chemistry Nankai University Tianjin 300071 P. R. China

Abstract

AbstractOrganic electroactive materials take advantage of potentially sustainable production and structural tunability compared to present commercial inorganic materials. Unfortunately, traditional redox flow batteries based on toxic redox‐active metal ions have certain deficiencies in resource utilization and environmental protection. In comparison, organic electroactive materials in aqueous redox flow batteries (ARFBs) have received extensive attention in recent years for low‐cost and sustainable energy storage systems due to their inherent safety. This review aims to provide the recent progress in organic electroactive materials for ARFBs. The main reaction types of organic electroactive materials are classified in ARFBs to provide an overview of how to regulate their solubility, potential, stability, and viscosity. Then, the organic anolyte and catholyte in ARFBs are summarized according to the types of quinones, viologens, nitroxide radicals, hydroquinones, etc, and how to increase the solubility by designing various functional groups is emphasized. The research advances are presented next in the characterization of organic electroactive materials for ARFBs. Future efforts are finally suggested to focus on building neutral ARFBs, designing advanced electroactive materials through molecular engineering, and resolving problems of commercial applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3