A Multielectron and High‐Potential Spirobifluorene‐Based Posolyte for Aqueous Redox Flow Batteries

Author:

Pang Shuai12ORCID,Li Lu2,Ji Yunlong3,Wang Pan2ORCID

Affiliation:

1. Department of Chemistry Zhejiang University Hangzhou Zhejiang 310058 China

2. Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science and Research Center for Industries of the Future Westlake University Hangzhou 310030 China Institute of Natural Sciences Westlake Institute for Advanced Study Hangzhou 310024 China

3. School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China

Abstract

AbstractThe rising energy demand driven by human activity has posed pressing challenges in embracing renewable energy, necessitating advances in energy storage technologies to maximize their utilization efficiency. Recent studies in aqueous organic redox flow batteries have focused primarily on the development of organic negative electrolytes, while the progress in organic positive electrolytes remains constrained by limitations in their redox potentials and effective electron concentrations. Herein, we report a spatially twisted chlorinated spirobifluorene ammonium salts (CSFAs), created through an unexpected green chlorination‐protection pathway during the initial cycling in the flow battery cell, utilizing chloride ions from counterions in aqueous solution. The chlorinated, nonplanar spiral structure of CSFAs possesses a one‐step four‐electron transfer electrochemical property and offers exceptional resistance to nucleophilic attacks, exhibiting an unprecedented redox potential as high as 1.05 V (vs. SHE). A full redox flow battery based on CSFA‐Cl (chloride ions as the counter ions) with 1.4 M electron concentration achieved an average coulombic efficiency exceeding 99.4 % and a capacity utilization reaching 95 % of the four‐electron capacity for a stable cycling over 250 cycles (~22 days). The present work exemplifies the use of side reactions to develop new redox species, which can be extended to create more structurally versatile energy storage materials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3