Affiliation:
1. George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
2. School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
3. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
4. Rewable Bioproduct Institute Georgia Institute of Technology Atlanta GA 30332 USA
Abstract
AbstractA depolymerizable vitrimer that allows both reprocessability and monomer recovery by a simple and scalable one‐pot two‐step synthesis of vitrimers from cyclic lactones is reported. Biobased δ‐valerolactone with alkyl substituents (δ‐lactone) has low ceiling temperature; thus, their ring‐opening‐polymerized aliphatic polyesters are capable of depolymerizing back to monomers. In this work, the amorphous poly(δ‐lactone) is solidified into an elastomer (i.e., δ‐lactone vitrimer) by a vinyl ether cross‐linker with dynamic acetal linkages, giving the merits of reprocessing and healing. Thermolysis of the bulk δ‐lactone vitrimer at 200 °C can recover 85–90 wt% of the material, allowing reuse without losing value and achieving a successful closed‐loop life cycle. It further demonstrates that the new vitrimer has excellent properties, with the potential to serve as a biobased and sustainable replacement of conventional soft elastomers for various applications such as lenses, mold materials, soft robots, and microfluidic devices.
Funder
Office of Naval Research
National Science Foundation
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献