Affiliation:
1. Department of Materials Science and Engineering Research Institute of Advanced Materials Seoul National University Seoul 08826 Republic of Korea
2. Department of Materials Science and Engineering Hongik University Sejong 30016 Republic of Korea
3. Advanced Institute of Convergence Technology Seoul National University Suwon 16229 Republic of Korea
Abstract
AbstractPerovskite materials have garnered significant attention over the past decades due to their applications, not only in electronic materials, such as dielectrics, piezoelectrics, ferroelectrics, and superconductors but also in optoelectronic devices like solar cells and light emitting diodes. This interest arises from their versatile combinations and physiochemical tunability. While strain engineering is a recognized powerful tool for tailoring material properties, its collaborative impact on both oxides and halides remains understudied. Herein, strain engineering in perovskites for energy conversion devices, providing mutual insight into both oxides and halides is discussed. The various experimental methods are presented for applying strain by using thermal mismatch, lattice mismatch, defects, doping, light illumination, and flexible substrates. In addition, the main factors that are influenced by strain, categorized as structure (e.g., symmetry breaking, octahedral distortion), bandgap, chemical reactivity, and defect formation energy are described. After that, recent progress in strain engineering for perovskite oxides and halides for energy conversion devices is introduced. Promising methods for enhancing the performance of energy conversion devices using perovskites through strain engineering are suggested.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献