In Situ Covalent Reinforcement of a Benzene‐1,3,5‐Tricarboxamide Supramolecular Polymer Enables Biomimetic, Tough, and Fibrous Hydrogels and Bioinks

Author:

Hafeez Shahzad1ORCID,Decarli Monize Caiado1ORCID,Aldana Agustina1ORCID,Ebrahimi Mahsa2ORCID,Ruiter Floor A.A.13ORCID,Duimel Hans4,van Blitterswijk Clemens1ORCID,Pitet Louis M.2ORCID,Moroni Lorenzo1ORCID,Baker Matthew B.1ORCID

Affiliation:

1. Department of Complex Tissue Regeneration MERLN Institute for Technology‐Inspired Regenerative Medicine Maastricht University P.O. Box 616 Maastricht 6200 MD The Netherlands

2. Advanced Functional Polymers Group Department of Chemistry Institute for Materials Research (IMO) Hasselt University Martelarenlaan 42 Hasselt 3500 Belgium

3. Department of Cell Biology–Inspired Tissue Engineering MERLN Institute for Technology‐ Inspired Regenerative Medicine Maastricht University P.O. Box 616 Maastricht 6200 MD The Netherlands

4. Maastricht MultiModal Molecular Imaging Institute P.O. Box 616 Maastricht 6200 MD The Netherlands

Abstract

AbstractSynthetic hydrogels often lack the load‐bearing capacity and mechanical properties of native biopolymers found in tissue, such as cartilage. In natural tissues, toughness is often imparted via the combination of fibrous noncovalent self‐assembly with key covalent bond formation. This controlled combination of supramolecular and covalent interactions remains difficult to engineer, yet can provide a clear strategy for advanced biomaterials. Here, a synthetic supramolecular/covalent strategy is investigated for creating a tough hydrogel that embodies the hierarchical fibrous architecture of the extracellular matrix (ECM). A benzene‐1,3,5‐tricarboxamide (BTA) hydrogelator is developed with synthetically addressable norbornene handles that self‐assembles to form a and viscoelastic hydrogel. Inspired by collagen's covalent cross‐linking of fibrils, the mechanical properties are reinforced by covalent intra‐ and interfiber cross‐links. At over 90% water, the hydrogels withstand up to 550% tensile strain, 90% compressive strain, and dissipated energy with recoverable hysteresis. The hydrogels are shear‐thinning, can be 3D bioprinted with good shape fidelity, and can be toughened via covalent cross‐linking. These materials enable the bioprinting of human mesenchymal stromal cell (hMSC) spheroids and subsequent differentiation into chondrogenic tissue. Collectively, these findings highlight the power of covalent reinforcement of supramolecular fibers, offering a strategy for the bottom‐up design of dynamic, yet tough, hydrogels and bioinks.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3