Triple‐Mechanism Enhanced Flexible SiO2 Nanofiber Composite Hydrogel with High Stiffness and Toughness for Cartilaginous Ligaments

Author:

Ma Yvqing1,Gong Jixian1,Li Qiujin1,Liu Xiuming1,Qiao Changsheng2,Zhang Jianfei3,Zhang Songnan1ORCID,Li Zheng1ORCID

Affiliation:

1. State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education School of Textile Science and Engineering Tiangong University Tianjin 300387 P. R. China

2. School of Biological Engineering Tianjin University of Science and Technology Tianjin 300457 P. R. China

3. National Innovation Center of Advanced Dyeing and Finishing Technology Taian 271001 P. R. China

Abstract

AbstractHydrogels are widely used in tissue engineering, soft robotics and wearable electronics. However, it is difficult to achieve both the required toughness and stiffness, which severely hampers their application as load‐bearing materials. This study presents a strategy to develop a hard and tough composite hydrogel. Herein, flexible SiO2 nanofibers (SNF) are dispersed homogeneously in a polyvinyl alcohol (PVA) matrix using the synergistic effect of freeze‐drying and annealing through the phase separation, the modulation of macromolecular chain movement and the promotion of macromolecular crystallization. When the stress is applied, the strong molecular interaction between PVA and SNF effectively disperses the load damage to the substrate. Freeze‐dried and annealed‐flexible SiO2 nanofibers/polyvinyl alcohol (FDA‐SNF/PVA) reaches a preferred balance between enhanced stiffness (13.71 ± 0.28 MPa) and toughness (9.9 ± 0.4 MJ m−3). Besides, FDA‐SNF/PVA hydrogel has a high tensile strength of 7.84 ± 0.10 MPa, super elasticity (no plastic deformation under 100 cycles of stretching), fast deformation recovery ability and excellent mechanical properties that are superior to the other tough PVA hydrogels, providing an effective way to optimize the mechanical properties of hydrogels for potential applications in artificial tendons and ligaments.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3