Affiliation:
1. Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
2. Department of Mechanical Engineering Michigan State University East Lansing MI 48824 USA
Abstract
AbstractWater vapor sorption is a ubiquitous phenomenon in nature and plays an important role in various applications, including humidity regulation, energy storage, thermal management, and water harvesting. In particular, capturing moisture at elevated temperatures is highly desirable to prevent dehydration and to enlarge the tunability of water uptake. However, owing to the thermodynamic limit of conventional materials, sorbents inevitably tend to capture less water vapor at higher temperatures, impeding their broad applications. Here, an inverse temperature dependence of water sorption in poly(ethylene glycol) (PEG) hydrogels, where their water uptake can be doubled with increasing temperature from 25 to 50 °C, is reported. With mechanistic modeling of water–polymer interactions, this unusual water sorption is attributed to the first‐order phase transformation of PEG structures, and the key parameters for a more generalized strategy in materials development are identified. This work elucidates a new regime of water sorption with an unusual temperature dependence, enabling a promising engineering space for harnessing moisture and heat.
Funder
U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献