Entangled Mesh Hydrogels with Macroporous Topologies via Cryogelation for Rapid Atmospheric Water Harvesting

Author:

Sun Jiajun12,Ni Feng3ORCID,Gu Jincui12,Si Muqing12,Liu Depeng12,Zhang Chang4,Shui Xiaoxue1,Xiao Peng12,Chen Tao12ORCID

Affiliation:

1. Key Laboratory of Advanced Marine Materials Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China

2. School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China

3. Max Planck Institute of Microstructure Physics 06120 Halle (Saale) Germany

4. School of Biological and Chemical Engineering NingboTech University Ningbo 315100 China

Abstract

AbstractSorption‐based atmospheric water harvesting (SAWH) is a promising technology to alleviate freshwater scarcity. Recently, hygroscopic salt‐hydrogel composites (HSHCs) have emerged as attractive candidates with their high water uptake, versatile designability, and scale‐up fabrication. However, achieving high‐performance SAWH applications for HSHCs has been challenging because of their sluggish kinetics, attributed to their limited mass transport properties. Herein, a universal network engineering of hydrogels using a cryogelation method is presented, significantly improving the SAWH kinetics of HSHCs. As a result of the entangled mesh confinements formed during cryogelation, a stable macroporous topology is attained and maintained within the obtained entangled‐mesh hydrogels (EMHs), leading to significantly enhanced mass transport properties compared to conventional dense hydrogels (CDHs). With it, corresponding hygroscopic EMHs (HEMHs) simultaneously exhibit faster moisture sorption and solar‐driven water desorption. Consequently, a rapid‐cycling HEMHs‐based harvester delivers a practical freshwater production of 2.85 Lwater kgsorbents−1 day−1 via continuous eight sorption/desorption cycles, outperforming other state‐of‐the‐art hydrogel‐based sorbents. Significantly, the generalizability of this strategy is validated by extending it to other hydrogels used in HSHCs. Overall, this work offers a new approach to efficiently address long‐standing challenges of sluggish kinetics in current HSHCs, promoting them toward the next‐generation SAWH applications.

Funder

National Natural Science Foundation of China

Ningbo Municipal Bureau of Science and Technology

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Alexander von Humboldt-Stiftung

International Cooperation Project of Ningbo City

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3