Phase‐Controlled Growth of 1T′‐MoS2 Nanoribbons on 1H‐MoS2 Nanosheets

Author:

Wang Yongji1,Zhai Wei1,Ren Yi1,Zhang Qinghua2,Yao Yao1,Li Siyuan1,Yang Qi1,Zhou Xichen1,Li Zijian1,Chi Banlan1,Liang Jinzhe1,He Zhen1,Gu Lin3,Zhang Hua145ORCID

Affiliation:

1. Department of Chemistry City University of Hong Kong Hong Kong China

2. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

3. Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials Department of Materials Science and Engineering Tsinghua University Beijing 100084 China

4. Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM) City University of Hong Kong Hong Kong China

5. Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 China

Abstract

Abstract2D heterostructures are emerging as alternatives to conventional semiconductors, such as silicon, germanium, and gallium nitride, for next‐generation electronics and optoelectronics. However, the direct growth of 2D heterostructures, especially for those with metastable phases still remains challenging. To obtain 2D transition metal dichalcogenides (TMDs) with designed phases, it is highly desired to develop phase‐controlled synthetic strategies. Here, a facile chemical vapor deposition method is reported to prepare vertical 1H/1T′ MoS2 heterophase structures. By simply changing the growth atmosphere, semimetallic 1T′‐MoS2 can be in situ grown on the top of semiconducting 1H‐MoS2, forming vertical semiconductor/semimetal 1H/1T′ heterophase structures with a sharp interface. The integrated device based on the 1H/1T′ MoS2 heterophase structure displays a typical rectifying behavior with a current rectifying ratio of ≈103. Moreover, the 1H/1T′ MoS2‐based photodetector achieves a responsivity of 1.07 A W−1 at 532 nm with an ultralow dark current of less than 10−11 A. The aforementioned results indicate that 1H/1T′ MoS2 heterophase structures can be a promising candidate for future rectifiers and photodetectors. Importantly, the approach may pave the way toward tailoring the phases of TMDs, which can help us utilize phase engineering strategies to promote the performance of electronic devices.

Funder

National Natural Science Foundation of China

City University of Hong Kong

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3